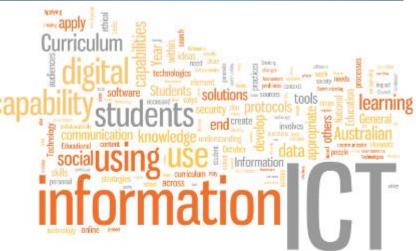
The role of University as a catalyst for science, technology and society

IJ

Maurizio Fermeglia

rettore@units.it

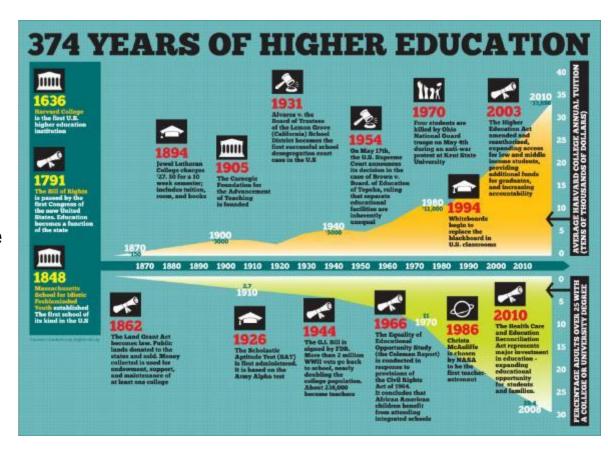

Globalisation: facilitators

- Ease of mobility
- Fall of transportation costs
- Information and Communication Technology
- Role of Multinational Enterprises and emergence of a more global/ internationalized share of the labor market
- English as a lingua franca (probably more an outcome than a driver though

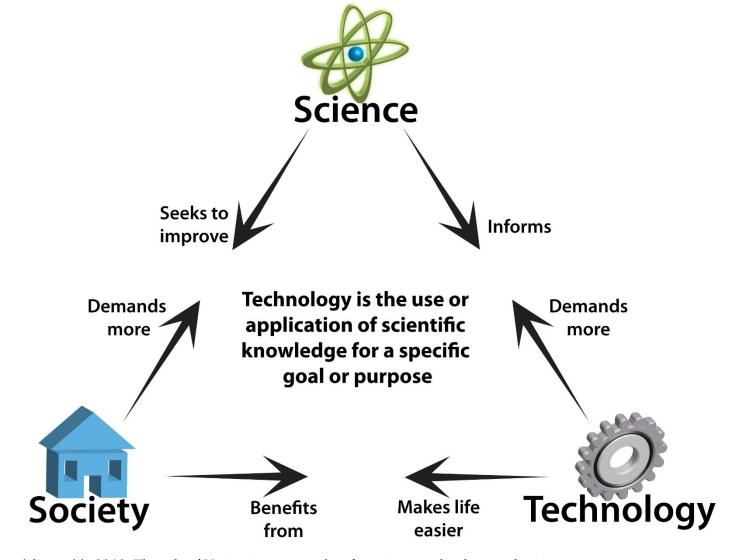
More interconnectedness, more visibility to and of the world



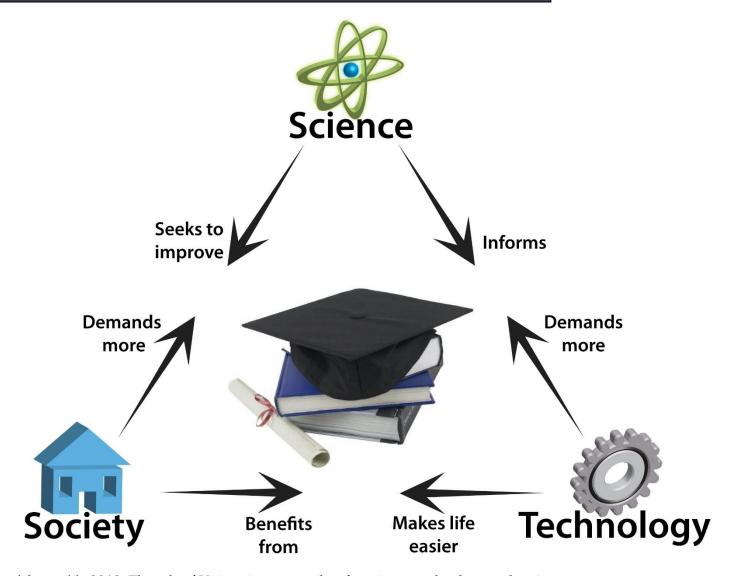
Globalisation: effects


- People mobility
 - Increasing migration
 - Increasing highly skilled migration
 - Student and academic mobility
- Liberalization and competition
 - Privatization in higher education
 - Trade in higher education, GATS
 - Economic competition for students and for first mover advantage
- Global area of higher education
 - International rankings
 - International actors: EU, WTO, etc.
 - University networks
 - Research networks

Demand for global universities?


- Expansion of HE will likely continue
 - Political factors
 - Demand of the economy
 - Projection: +15% on average by 2025 in the OECD area
- Expansion of crossborder education
 - Student and programme mobility mainly
 - Its nature may change over time

Does that imply a market for global universities?



Science, technology & society

Innovation

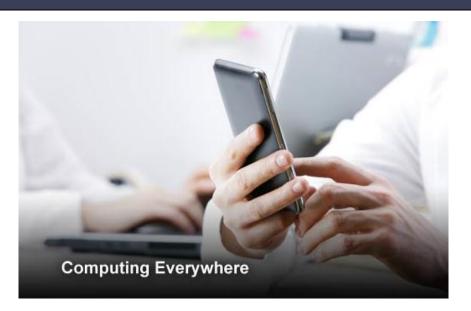
Culture

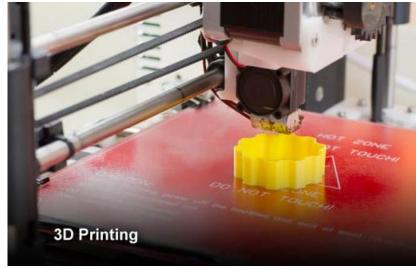
Curiosity

Creativity

An « investment for the future » should stress:

- Blue skies research
- A multidisciplinary advantage
- Research and education and culture
- Knowledge transfer for a competitive economy


Top 10 Strategic Technology Trends


Merging the Real World and the Virtual World	1	Computing Everywhere	
	2	The Internet of Things	
	3	3D Printing	
Intelligence Everywhere	4	Advanced, Pervasive and Invisible Analytics	
	5	Context-Rich Systems	
	6	Smart Machines	
	7	Cloud/Client Computing	
The New IT Reality Emerges	8	Software-Defined Applications and Infrastructure	
	9	Web-Scale IT	
	10	Risk-Based Security and Self-protection	

Merging the real world and the virtual world

Intelligence everywhere

What is Watson?

From hospitals to kitchens, Watson has clocked in to work and is already taking impressive strides across industries. But to understand the power of Watson, we must first understand cognitive computing and how it enhances, scales, and accelerates human expertise.

Smart Machines

The new IT reality emerges

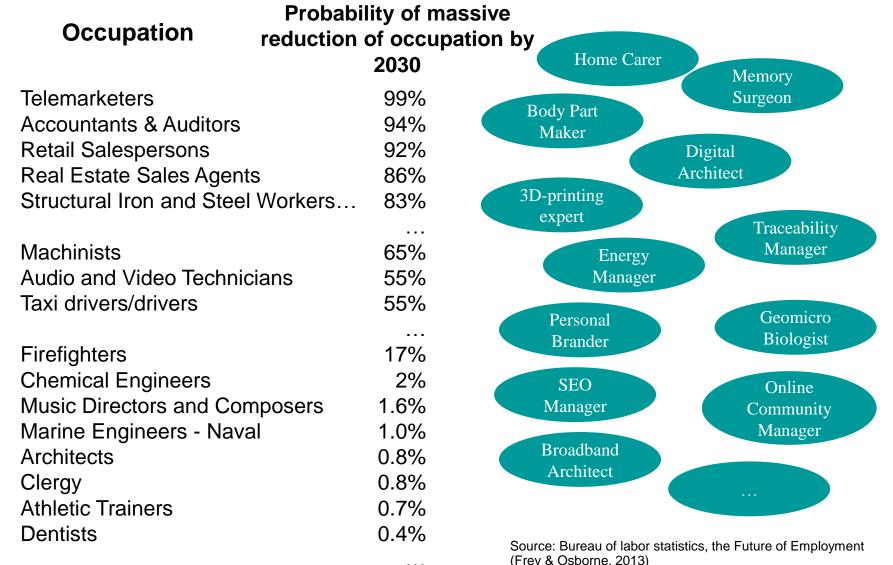
Internet of things

Investments priorities

Rank	Investment priority	2014	2015
1	BI/analytics	41%	50%
2	Infrastructure and data center	31%	37%
3	Cloud	27%	32%
4	ERP	26%	34%
5	Moblie	24%	36%
6	Digitalization/digital marketing	17%	11%
7	Security	13%	11%
8	Networking, voice and data comms	12%	12%
9	Customer relationship/experience	11%	8%
10	Industry-specific applications	9%	10%
11	Legacy modernization	7%	7%
12	Enterprise applications	6%	2%

ICT in higher education 2014 survey

Applications in cloud


Email	87%
Social networking	40%
Course/Learning Management (LMS or CMS)	50%
Data Storage	34%
Library applications	38%
Business continuity/disaster recovery	25%
CRM	29%
Desktop tools (i.e. MS Office)	33%
Portal	20%
Data Center	13%
Student applications (registration, enrollment)	15%
Financial application	15%
Other (please specify)	8%

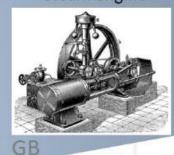
Emerging technologies

Security	20%
Analytics and Big Data	10%
Mobile/BYOD	10%
Wireless	9%
Network and bandwidth issues	6%
Cloud	6%
Adaptive Learning/MOOCs	5%
Data management and storage	5%
Virtualization	4%
Business intelligence and CRM	4%
SaaS/PaaS	2%
Other	11%

The future of employment

UNIADRION General Assembly 2016: The role of University as a catalyst for science, technology and society

Industry 4.0



DriversQuality of life
Engineering Sciences

1

1st

steam engine

1782

Power generation

Mechanical automation

Mobility

2nd

conveyor belt

1913

Industrialization

µelectronics

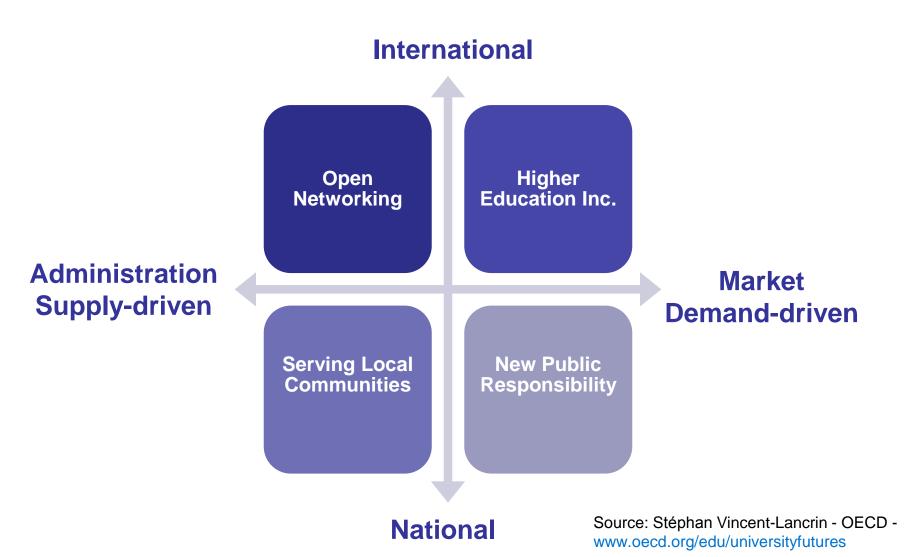
Computer, NC, PLC

1954

Electronic Automation Cyber Physical Systems

4th

ICT



2015

Smart Automation

Scenarios for higher education systems

Scenario 1: Serving local communities

Drivers

- Backlash against globalization
- More geo-strategic sensitivity in research

Features

- (Re)focus on national and local missions
- Public funding and control of the academic profession
- Convergence between universities and polytechnics
- Elite universities struggle to stay more internationalized
- Less research, mainly on humanities
- Big science relocated to government sector (more secretive and less internationalized)

Related developments

- Highlight of regional missions
- Anti- globalization movements

Scenario 2: New public responsibility

Drivers

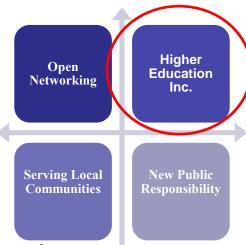
- Pressure on public budget (ageing, public debt, etc.)
- Diffusion of governance structures based on new public management

Features

- Mainly public funding but autonomous institutions controlled at arm's length (incentives + accountability)
- Mixed funding: new markets + more tuition fees (income contingent loans)
- Demand-driven system with more marked division of labor (specialization but most HEIs continue to do some research)
- Research funds allocated through domestic competitive process
- Related developments
 - Autonomy given to HEIs (sometimes legally privatized)
 - Debates on cost sharing
 - Encouragement of competition between HEIs

Scenario 3: Higher education, Inc.

Drivers

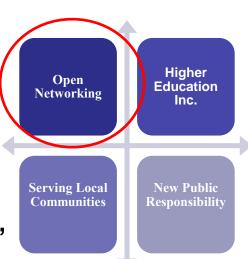

Trade liberalization in education (GATS, bilateral)

Features

- Global competition for education & research services
- Public funding for non-commercially viable disciplines exclusively
- Segmentation of the education and research market
- Vocational higher education is an important share of the market
- Strong (international) division of labor according to competitive advantage
- Concentration of research and worldwide competition for funding
- English as main language of study

Related developments

- Rise of trade in HE & inclusion of education in trade negotiations
- International competition for students
- Increase of cross-border funding of research



Scenario 4: Open Networking

Drivers

- International cooperation & harmonization of systems
- Technology
- Ideal of open knowledge
- Features
 - Intensive networking among institutions, scholars, students (& industry)
 - Modularization of studies under academics' control
 - International collaborative research
 - Strong hierarchy between networks but quick spillovers
 - Lifelong learning outside the HE sector
- Related developments
 - Bologna process, international academic partnerships and consortia,
 - Increasing computing power and culture of openness challenging traditional intellectual property rights

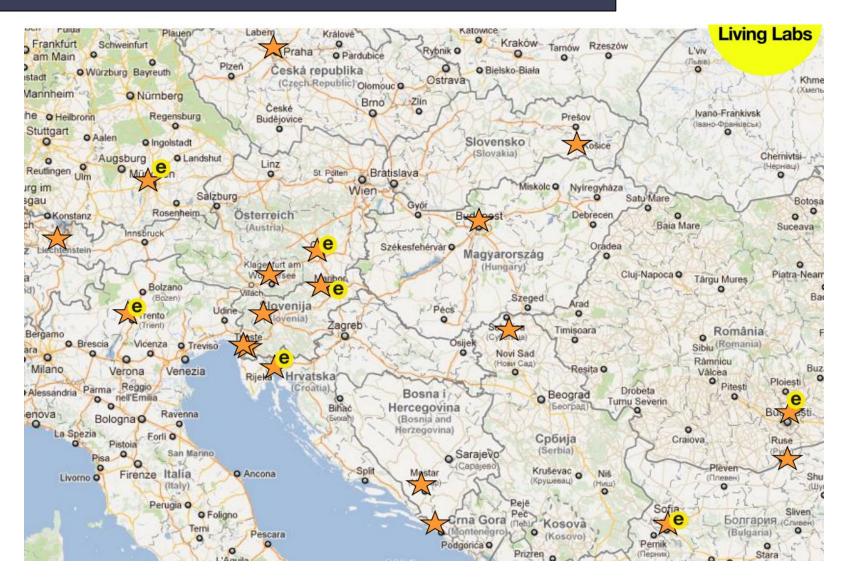
Collaboration, cooperation, networking... some proposals

- Joint pool and exchange of on-line courses
- Distant join use of research equipment by remote operators
- A common framework of joint summer schools
- On-line seminars directly broadcasted form research centers labs for high school classes
- Use of ICT for the development of social sciences and humanities
- Identification of common crossborders smart specialization strategies

The ALADIN (ALpe Adria Danube universities INitiative) network

Established in Ljubljana on 23rd October 2002 by

- Karl-Franzens University Graz (Austria),
- University of Rijeka (Croatia),
- University of Trieste (Italy) and
- University of Maribor (Slovenia)

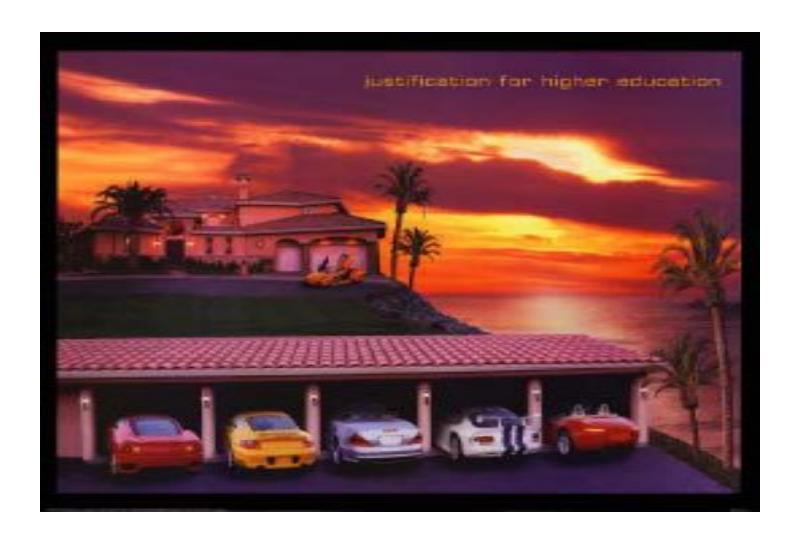

as an international network working at regional level

- to share common ideas and knowledge in teaching and research activities in the field of e-Commerce and ICT
- to cooperate creating mobility of students and professors, offering common lectures, creating virtual teams of students from different universities and professors lecturing at different universities,
- in order to harmonize with global and international activities of e-Commerce, involving SMEs

Today, universities, associated centers of excellence and Living Labs located in 11 European countries, namely Austria, Bosnia & Herzegovina, Bulgaria, Croatia, Czech Republic, Germany, Hungary, Italy, Serbia, Slovakia and Slovenia, are represented.

The ALADIN network represents 19 universities in the Danube Region.

21st Century Learning Competencies



- "We are responsible for preparing our students to address problems we cannot foresee with knowledge that has not yet been developed using technology not yet invented."
- "The problems we have cannot be solved at the same level of thinking at which we created them."

Albert Einstein

Is Higher Education Primarily for Economic Gain?

Or Developing the Nation's Talent and Creativity?

... anyway!!

"If you think education is expensive, try ignorance"

Derek Bok - Presidente of Harvard University 1971-1990

